
Hexavalent glycoconjugates were prepared via self-assem-
bly of divalent glycosylated 2,2'-bipyridine derivatives with fer-
rous chloride. The Λ- and ∆-stereoisomeric complexes were
preferentially formed from α- and β-glucoside derivatives,
respectively.  The α-glucoside cluster exhibited an enhanced
affinity for concanavalin A.

Multivalent or clustered saccharide chains of glycoproteins
and glycolipids on cell surfaces are key substances in various cel-
lular recognition events and signal transductions.1,2 Recently,
artificial glycoconjugate polymers, dendorimers, calixarenes,
cyclodextrins, and porphyrins have been developed as clustered
saccharide models3-5 to investigate their high affinities to
lectins, toxins, viruses, and cells. In the series of our research
for functional glycoconjugate materials,6-9 we are now interest-
ed in clustered glycoconjugate assemblies on metal templates.
These asemblies can be simply prepared only by mixing of gly-
cosylated bipyridine ligands with metal ions.  In addition, tran-
sition metal complexes are redox-active and some are fluores-
cent (e.g., [Ru(bpy)3]2+).10 In this respect, transition metal
complex-based glycoconjugates will be useful for sensing vari-
ous saccharide recognition phenomena.  However, little has
been reported on coordinate-bonded glycoconjugates, except of
those by Sakai et al.11,12 They prepared trivalent glycoconju-
gate clusters based on tris-bipyridine metal complexes, which
exhibited unique CD spectral change on binding to lectins.  We
here report that hexavalent glycoconjugates based on tris-

bipyridine ferrous complex (Chart 1) displayed high diastereo-
selectivity and acquired a strong affinity to lectin.

The tris-bipyridine ferrous complex bearing hexavalent α-
glucoside was prepared from p-nitrophenyl α-D-glucopyra-
noside (α-Glc-pNP) as follows. The glucopyranoside moiety
was acetylated and the nitro function was hydrogenated and
amidated with 4-azido-n-butyryl chloride. The azido group was
hydrogenated and amidated with 2,2'-bipyridyl-4,4'dicarboxyl
chloride, followed by deacetylation to afford divalent α-gluco-
sylated 2,2'-bipyridyl-ligand (α-Glc-3-bpy) with a flexible C3
spacer. When α-Glc-3-bpy was mixed with FeCl2 in
water/methanol (1/1 v/v) at room temperature, the solution
turned red immediately. The formation of tris-complex  ([Fe(α-
Glc-3-bpy)3]Cl2) was confirmed by the characteristic shift of
1H-NMR signals of bipyridyl moieties, the appearance of
metal-to-ligand charge transfer (MLCT) absorption band at 544
nm, and the stoichiometry demonstrated by Job method. The
complex bearing hexavalent saccharide terminals was well sol-
uble in water. The corresponding β-O-glucosylated 2,2'-bipyri-
dine (β-Glc-3-bpy) and ferrous tris-complex ([Fe(β-Glc-3-
bpy)3]Cl2) were also prepared from p-nitrophenyl β-D-glucopy-
ranoside (β-Glc-pNP).

[Fe(α-Glc-3-bpy)3]Cl2 and [Fe(β-Glc-3-bpy)3]Cl2 gave
almost symmetrical CD spectra assignable to Λ- and ∆-
[Fe(bpy)3]

2+, respectively, as shown in Figure 1. The opposite
stereoisomers of the bipyridyl array should arise from the oppo-
site chirality of their anomeric positions of the saccharide moi-
eties. Both molar ellipticities due to π-π* transition (ca. 300
nm) and MLCT (ca. 540 nm) were smaller than those of enan-
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tio-pure [Fe(bpy)3]
2+,11,13 which indicated that the glycoconju-

gate metal complexes were mixtures of Λ- and ∆-stereoisomers.
The two stereoisomers in each glycoconjugate were sepa-

rated by reverse-phase HPLC on a CrestPak C18T-5 analytical
column using a linear gradient of acetonitrile and an aqueous
0.1 M ammonium acetate solution. The major and minor peaks
of [Fe(α-Glc-3-bpy)3]Cl2 were assigned, respectively, to Λ- and
∆-isomer on the basis of their CD spectra. The Λ-∆ ratio esti-
mated from their integration was 73:27. The rather high
diastereo-excess (46% de) was in accordance with that estimat-
ed by 1H-NMR spectrum. Nuclear Overhauser effect (NOE)
was detected between the phenyl and bipyridyl protons in 1H-
NMR spectrum of [Fe(α-Glc-3-bpy)3]Cl2 in D2O. We assume
that the hydrophobic interaction between the phenyl and
bipyridyl moieties separating with the flexible alkyl spacer may
result in a compactly packed conformation of the complex in
water. The resultant proximity of the chiral saccharide units to
the complex center may account for the high diastereo-selectiv-
ity of the complexes. 

Binding affinity of the conjugates was investigated by inhi-
bition of lectin-induced hemagglutination14 using ConA (con-
canavalin A from jack bean, α-Glc specific) and RCA120
(Ricinus communis agglutinin from castor bean, β-Gal specific).
Table 1 summarizes the minimum inhibition concentrations per
saccharide residue (ICmin). [Fe(α-Glc-3-bpy)3]Cl2 was a
stronger inhibitor for ConA-induced hemagglutination than D-
glucose and α−Glc-pNP by about 1000- and 100-fold, respec-
tively. [Fe(β-Glc-3-bpy)3]Cl2 was less potent inhibitor. RCA120-
induced hemagglutination was not inhibited by these conjugates

(ICmin ≥ 1 × 10-1 M). The enhanced specific interaction of
[Fe(α-Glc-3-bpy)3]Cl2 for ConA may arise from hexavalent α-
glucoside assembly and hydrophobic phenyl aglycon. In addi-
tion, their saccharide moieties may be induced-fit to the binding
site of ConA, because of the flexibility of alkyl spacer.

In conclusion, hexavalency, hydrophobicity, and flexibility
of the glycosignals on metal complexes play a substantial role
in enhancement of diastereo-selectivities and affinities for
lectins. These properties will be advantageous for high-sensi-
tive monitoring of various saccharide recognition phenomena.
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